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Abstract 

A modification of Beenker's pattern is considered that 
is generated by the transformation matrix obtained 
by applying the rotation matrix to that for Beenker's 
pattern. The symmetry of the modified pattern is 
discussed based on the transformation matrix. It is 
well known that Beenker's pattern, a two-dimensional 
eightfold quasiperiodic pattern, is characterized by 
the transformation matrix, the column vectors of 
which are the projected basis vectors in four- 
dimensional cubic lattice space. 

1. Introduction 

The theory of quasiperiodic patterns has been exten- 
sively studied in connection with the modeling of 
quasicrystals (Bak & Goldman, 1988). Among many 
methods of generating quasiperiodic patterns, the 
projection method is a standard and widely used 
method (Bak & Goldman, 1988). In this paper a 
two-dimensional eightfold symmetric quasiperiodic 
pattern or tiling called Beenker's pattern is reviewed 
first. It is generated by the projection method from 
the four-dimensional cubic lattice to the two- 
dimensional pattern space so as to have eightfold 
symmetry. Then, the modification of this pattern is 
considered by introducing an orthogonal transforma- 
tion matrix based on the rotation in four-dimensional 
space. The rotation of the transformation matrix 
defining the pattern and test spaces (see § 2) has been 
considered by Kramer (1987) in connection with 
icosahedral and cubic symmetries. The phason strain, 
another kind of modification or deformation, with 
respect to Beenker's pattern is treated by Wang & 
Kuo (1988) and Socolar (1989). 

2. A two-dimensional eightfold symmetric 
quasiperiodic pattern 

It is known that a two-dimensional eightfold sym- 
metric quasiperiodic pattern, Beenker's pattern 

0108-7673/92/040470-06506.00 

(Beenker, 1982) is characterized by the orthogonal 
transformation matrix A (Wang & Kuo, 1988; 
Socolar, 1989; Soma, Watanabe & Ito, 1990), 

i 1/~/,2 0 -1 /x /2~  
1 1/v~ 1 1 /v~ |  

A = --~ -1 /  x/~ 0 l/x~2 I" 

1 /~  -1 1 / ~ /  

(1) 

The column vectors correspond to basis vectors of 
the original axes (xi) with respect to the transformed 
axes (x~). Since the upper and the lower two rows 
correspond to the pattern (parallel) and the test (per- 
pendicular) space, respectively (Soma, Watanabe 
& Ito, 1990), the upper and lower two-dimensional 
column vectors al I and a~ (i , j  = 1, 2, 3, 4) represent 
the projected basis vectors in their respective spaces 
as shown in Fig. 1. It is known that the pattern consists 
of a square and a rhombus of equal-length sides, as 
shown in Fig. 2. The pattern is thought of as a mixture 
of two square lattices rotated relative to each other 
by I7-/4. It is easy to see that the matrix A is generated 
by the product of four simple rotation matrices in 
four-dimensional space, 

A =  R13(0/13)R24(0/24)R34(a34)R23(0/23), (2) 

with 0/13 = -zr /4 ,  0/24 = rr/4, 0/34 = Ir/4 and 0/23 = zr/2, 
where Ro(%) is the matrix representing a simple 
rotation in the xixj plane by an angle 0/ij from the 
axis xi toward the xj axis, such as sin, ,2 o!) 

l - s in0 / ,2  cos 0/12 0 
R12(0/12) 

100  0 , 
o 

0 0 

(3) 

As is discussed by Wang & Kuo (1988), the pattern 
generated by the transformation matrix A has sym- 
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metry D8h , having three point symmetric operations; 
an eightfold rotation C8, a vertical inversion v and 
a central inversion 0-. The action of the element C8 
is derived as follows: consider a double rotation 
matrix R(O, ~o) with the angles 0 and ~0 in the pattern 

112 l/v"~ 

__d 

a~- a, ~ 

d 

1 / 2  1/,/~ 

Fig. 1. Basis vectors in pattern and test space projected by (1). 

Fig. 

7 

i 
2. Eightfold symmetric quasiperiodic pattern (Beenker's 

pattern). 

and test spaces, respectively, 

cosO sinO 0 0 ) 

- s in  0 cos 0 0 0 
R(O, q~) = 0 0 cos q~ sin " 

0 - s in  q~ cos 

(4) 

It has been shown that (Weigel, Veysseyre, Phan, 
Effantin & Billiet, 1984; Veysseyre, Weigel, Phan & 
Ettantin, 1984; Whittaker & Whittaker, 1986; Ishihara 
& Yam amoto, 1988) the action F(Cs) of the element 
C8 is AR(O, ~o)A, with 0 = zr/4 and ~o = 3rr/4 being 
respectively the angles between al j and all+l and a~- 
and a~÷l (i = 1, 2, 3), as shown in Fig. 1, and thus (0 01) F(Cs )=  0 0 1 

0 0 0 

-1  0 0 

which indicates eightfold rotational symmetry. 

(5) 

3. Modification of Beenker's pattern 

The first modification is a pattern that can be thought 
of as a mixture of two square lattices rotated relative 
to each other by an arbitrary angle a such that the 
xi component of a12 I is (1 + 6 ) / 2  as shown in Fig. 3. 

& 

a~ 

1 - 26 - ~2/2 

(1 6)/2 t ~/,,,7 

V i  - 26 - 6212 l / , / g  

Fig. 3. Basis vectors in pattern and test space projected by (6). 



The transformation matrix A, is given as 

( i (I +8)/x/2 
l 0 ~/l-2a-a~/v@ 

A,(a)=~ - ( i  + 8)/4-2 
# I - 2 6 -  a2/v~ 

0 -x/1 -28 -  82/x/2\ 
I 

1 ( l  + 8 ) I v /2  / 

0 , / i_28_82/~j .  (6/ 
-1 (I + 8)/x/2 

The projection matrices PI and P~- (Elser, 1986) when 
multiplied by A~ on the right produce the matrices 
AI and A~, 

AI=A,PI and Ai L=A,P-~, (7) 

which have respectively the upper and lower two rows 
of A, and zeros in other rows (Soma, Wanatanbe & 
Ito, 1990). From (7) it is easy to derive the projection 
matrices P I  I and Pi L for the pattern and the test space, 

l-2( 1 (l + 8)/v/2 
P~(8) = (I +8)/v~ 1 

0 41-28 -82/,/i 
- 4 1 - 2 8  - 82/,/i 0 

and 

(9) 

0 

x/1 -- 28 -- 82/x/'2 

1 
(l+a)/v~ 

-~ /1-  280- 821v~ 1 

( l+al)/v ~ / (8) 

8 = (x/3-x/2)/x/2, then the matrix A I becomes 

A,[6 = ( v ~ -  x/~)/v~] 

( 1 v"-3/2 0 - 1 / 2 \  

1 0  1/2 1 v~/2  / 
= ~  - x/3/2 0 I/2 ] 

1/2 -1  x/3/2/ 

and the projection matrices PI and Pi L become 

Pl[a = (v~- ~@)I,/2] 
1 v~ /2  0 - 2 / 

= 1 v~/2  1 1/2 ~/ 

2 0  1/2 1 x /3 /2 ,  

- 1 / 2  0 v/3/2 1 / 

(11) 

(12) 

and 

P~[6 = (x/3- 4-2)/v~] 

( 1 - V ' ~ / 2  0 1 ] 1 2 / 
=1 - x/3/2 1 -1/2 /0 

2 0 -1/2 1 -v~/21 " 
1/2 0 - v/3/2 

(13) 

The pattern is shown in Fig. 4; it consists of three 
types of rhombic tiles and is quasiperiodic, having 
fourfold symmetry. The action of the rotational ele- 
ment of the point symmetric operation is obtained in 
the same way as above; A~R(O, q~)A,, with 0 = rr/2 
and q~ = -7 r /2  being respectively the angles between 

II II II II ± i ± ± a, and a3 or a2 and a4, and a, and a 3 or a2 and a4, 

P-~(6)=I-PI(6 ) 
1 - ( 1  + 6 ) / v ~  

1 -(1 +a)/v~ 1 

=2Ix / 0 -x/1-28-62/x/~ 
1 - 28 - 82/x/'2 0 

0 ~/I - 28~ 82/,/~ 1 
- x/'l - 28 - 82/x/2  , ,  

1 --(l+ ] 
-(I  + 8)Iv~ ? ) I ~  ' 

f 

where I is the unit matrix in four-dimensional space. 
It can be shown that A, is derived by multiplying A 
on the left by the rotation matrix AR24(a24)A-' and 
it is decomposed into four simple rotation matrices, 

A,(824) = R14(ot24/2)g23(a24/2) 

x R,2(o~2J2)R34(-a2J2)A, (10) 
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with 1 + 6 = c o s  a 2 4 + s i n  Of 24. As a special case, put Fig. 4. Modified Beenker pattern generated by (11). 
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which can be transformed into the standard form as 

(i 0 i) F ( G ) =  0 o 
- 0 0 

-1  0 

(14) 

showing the fourfold rotational symmetry. 
Next consider the pattern generated by modifying 

the length but fixing the orientations of basis vectors 
al I as shown in Fig. 5. The transformation matrix A2 

(15) 

is 

/~/ (1+8) ~/1-28-82/x/2 
1 0 n/1 - 23 - ~52/x/2 

A2(~) = ~  1 - 2 8 - 8 2  -(1 +3) /v~  

0 (I+8)Iv~ 

0 -~/1 -2~  - ~2/V~\ 
/ 

(1+3) x/1 - 2t5 - t52/x/2 / 

0 (1 +8) /v~  /" 

- , / 1 - 2 8 - ~  ~ (1 + ~)/4~ / 

It can be shown that A2 is derived by multiplying A 
on the left by the rotation matrices RI3 and R24 , 

A2(a) = R13(ot13)R24(ot24)A, (16) 

with 1 + 8 = cos a + sin a, where a = a~3 = -ct24. As 
an example, take the case of 3 = (x/2-x/3)/x/3; the 

4 

~ / 2  - 
(1 + 6)1,,/7 

a~ a 4 

,/1-2~-6 /v'7 ( 

> 

(i + ~)/2 

transformation matrix becomes 

i) 
- 4 ~  

1 o 4~ ,/~ 4~ 
A 2 1 8 = ( 4 2 - q ~ ) / 4 3 ] = 4 6 - -  2 -1  0 

1 0 - 2  

(17) 

and the pattern is periodic in both the x 1 and the x2 
directions as shown in Fig. 6. 

The periodicity is known from the fact that the 
component ratio of the lower two row vectors in (17) 
is rational. Since these vectors are used to generate 
the coordinates of the projected point in the test space 
by multiplying the lattice vector in four-dimensional 
space, both the x3 and the x4 coordinates are discret- 
ized with the step l/x/-6, which shows the periodicity 
in the x~ and x2 directions. The period is found by 
considering the minimum loop in the test space con- 

1 j_ ± 
sisting of ai ~, a2 and a4 for the xl direction and a3 , 

_L J_ a2 and a4 for the x2 direction, respectively. They are 
(a~-, -a~-, ai ~) and (a~-, a~-, a~). The corresponding 
vector sequences in the pattern space are (a~, -a14 I , a l )  
and (a~, a14 I, a~), from which the period is shown to 
be x/~ in both the x~ and the x2 directions (the details 
will be discussed elsewhere). 

The action of the rotational element of the 
point symmetric operation in this case is shown to 
be A2R(O, ¢p)A2 with 0 = 0  for a~ and ~ 7r for a4, 
which can be transformed into the standard form, (000) 

1 0 0 
r ( v ) =  0 -1  ' (18) 

0 0 0 - 

Fig. 5. Basis vectors in pattern and test space projected by (15). Fig. 6. Modified Beenker pattern generated by (17). 
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showing that the pattern has mirror symmetry, in 
which a~ is the mirror axis. 

Now, consider the pattern which is periodic in the 
x2 direction but quasiperiodic in the Xl direction. By 
modifying the x2 component of the basis vectors in 
the pattern space by the amount 8 (Fig. 7), one obtains 
the transformation matrix A3, 

1 ( 1 + 8 ) / ~  
A3(8) = ~  - l / v ~  

, /1-2a - a~Iv'~ 

0 - I /v"2 \ 

' / l - 2 a - a 2  (l + a)/vr2 i 
0 l / ~  / "  (19) 

- ( l+a)  dl-2a-a21~l 
It can be shown that A3 is derived by multiplying A 
on the left by the rotation matrix R24, 

A3(a:,) = R24(a24)A, (20) 

with 1 + 8 = cos a24+ sin a24. As an example, take 
8 = ( 2 -  x/3)/x/3; the transformation matrix becomes 

A3[a = (2- x/3)Ivr3] 

,/5 v'3/v'2 0 -43/v'~ 
1 0 ~ ~ v/2 

- ~  ,/5 -~ / , , ' ~  o v3/,,,,'~ 
0 1 - 2  1 

(21) 

a• 
a //2 

(I + 6)I-,,5 

al~ 4 ~ 

d - 

1/2 

Fig. 7. Basis vectors in pattern and test space projected by (19). Fig. 8. Modified Beenker pattern generated by (21). 

and the pattern is shown in Fig. 8, which is periodic 
in the x2 direction and quasiperiodic in the x~ direc- 
tion, the period being x/3, which is shown by consider- 
ing the minimum loop in the test space and the 
corresponding vector sequence in the pattern space, 
as in the previous case. 

The action of the rotational element of the point 
symmetric operation is the same as the A2 case with 
a mirror axis ofal3 I . The angles 0 = 0 for a~ and ~ = -Tr 
for a~- lead to F(v) as given in (18). 

All the transformation matrices considered above 
are orthonormal and can be derived by the product 
of simple rotation matrices. In three-dimensional 
space, the Euler-angle parametrization of the 
orthogonal matrix is known and can be derived by 
the product of three simple rotation matrices with 
different angle parameters [RI2(d/)RI3(-O)R12(~p) ]. 
The generalization to four-dimensional space is 
straightforward and can be shown to be 

RI2(Ot12)RI3(Ot13)RI4(otI4)... R34(c¢34 ). (22 )  

There are six parameters in total, corresponding to 
those necessary to specify the rotated axes relative to 
the original axes. The number of parameters is the 
same as the number of ways of choosing two items 
from four and equals the number of independent 
planes of rotation. All the above transformation 
matrices are derived by assigning appropriate values 
to these parameters. 

4.  I n f i n i t e s i m a l  r o t a t i o n  

In the preceding discussions, the parameter 8 can 
take an arbitrary value, but if 8 is restricted to an 
infinitesimal value, another class of modifications can 

i 
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be examined in which the transformation matrix is 
only approximately orthogonal. A typical example is 
a transformation matrix in which only the test space 
part is modified so that the periodic pattern can be 
generated as an approximant to the Beenker pattern 
as well as the quasiperiodic one. A transformation 
matrix Aa(e) satisfying this condition is 

if0 1 

1 
- , / i+e 

4i+~/(1+~) 

0 

E~/2 (23) 

which is orthonormal, neglecting the terms of 0(82). 
The projected basis vectors in the test space are 
obtained by rotating that for the original Beenker 
pattern anticlockwise by an angle e/2. For e -- 1/49, 
A4 becomes 

(24) 

A4(e = 1/49) 

490 490/x/2 0 -490/x/2 \ 

= x/2 0 490/v~ 490 490/x/2 / 

980 490 343 / 
343 -490 350 ] 

which is shown to be periodic with minor period 
(70 + 99/x/2) in both the xl and the x2 directions (the 
details will be discussed elsewhere). 

5. Concluding remarks 

A class of patterns is considered that is generated by 
applying rotation matrices to the transformation 
matrix corresponding to Beenker's pattern; some are 
quasiperiodic and some are periodic in one direction 
or in both the x~ and the x2 directions. The transforma- 
tion matrix corresponding to these patterns can be 
specified by assigning appropriate values to angle 

parameters for the Euler-angle parametrization of the 
orthogonal transformation matrix in four-dimen- 
sional space, which has six independent parameters. 
The case in which only the test space part of the 
transformation matrix is modified is also considered. 
The three types of rhombic tiles in Fig. 4 and those 
in the 12-fold pattern obtained from a six-dimensional 
hypercubic lattice by projection (Ishihara, 1985; G/ih- 
ler & Rhymer, 1986) suggest the existence of a con- 
tinuous path of deformation, including the phason 
strain, between these patterns. 
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